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3. Mutual Information-based CNN-Aided Learned Factor Graphs 5. Summary & Conclusions

* About 50 million people worldwide! suffer from
epilepsy, an abnormal brain activity leading to

sejzures.

 Epileptic seizures can cause life-threatening

symptoms that can affect the quality of life.

« The most common tool used to diagnose

seizures is electroencephalogram (EEG)?.
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https://autism360.com/news/are-eeg-signals-likely-to-predict-autism/

e EEG both

correlation as well as temporal correlation.

recordings exhibit iInter-channel

 The Inter-channel correlation exists since the
epileptic activity propagates across different

areas in the brain.

2. Methodology

Exploit both spatial and temporal correlation

among EEG signals using a hybrid of model-

based and data-driven approaches.

Use neural mutual information estimators to

estimate inter-channel correlation.

Use learned factor-graphs to exploit temporal

correlations.

 We proposed MICAL, which is a data-
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4. Results +

achieves significant  performance

AUC ROC Improvement compared to prior SOTA.

5 different models are considered for comparison.
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Two baseline SOTA models are included.
GRU Is added to the proposed 1D CNN to have
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another model that mitigates temporal correlations.
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Results Summary

AUC-ROC AUC-PR F1 score
2D CNN? 77.81 + 0.08 37 + 17.76 88.3 + 3.37 7. Acknowledgements
Spectrogram® | 75.4 + 0.11 37.65 + 10.25 02.77 + 3.43
ID CNN 8212+ 0.04  42.23 + 12.96 01.47 + 2.55 -
ID CNN-GRU | 82.28 + 0.03  44.43 + 10.71 00.42 + 6.86 G
MICAL 83.8 + 0.04 50.38 + 13.68 93.42 + 1.88 Schulich




